Create list of control options (to pass to emuFit())
Usage
control_fn(
control = list(),
max_step = 1,
ignore_stop = FALSE,
use_fullmodel_info = FALSE,
use_fullmodel_cov = FALSE,
use_both_cov = FALSE,
inner_maxit = 25,
inner_tol = 1,
c1 = 1e-04,
trackB = FALSE,
return_nullB = FALSE,
return_score_components = FALSE,
return_both_score_pvals = FALSE,
B_null_tol = 0.001,
rho_init = 1,
tau = 2,
kappa = 0.8,
constraint_tol = 1e-05,
ntries = 4
)Arguments
- control
Current control list (optional), will augment it with missing arguments
- max_step
Maximum stepsize; update directions computed during estimation (under the alternative). Will be rescaled if a step in any parameter exceeds this value. Defaults to 1.
- ignore_stop
whether to ignore stopping criteria and run
maxititerations (helpful for diagnostic plots to determine convergence).- use_fullmodel_info
Used in estimation under the null hypothesis. Whether to use information matrix from estimation under the alternative hypothesis to construct the robust score statistic (instead of information matrix from estimation under the null hypothesis). Defaults to
FALSE.- use_fullmodel_cov
Used in estimation under the null hypothesis. Whether to use covariance matrix from estimation under the alternative hypothesis to construct the robust score statistic (instead of covariance matrix from estimation under the null hypothesis). Defaults to
FALSE.- use_both_cov
Used in estimation under the null hypothesis. Whether to do score test twice, once with covariance matrix under the alternative hypothesis and once with covariance matrix under the null hypothesis. Defaults to
FALSE.- inner_maxit
Used in estimation under the null hypothesis. Maximum number of iterations within each inner loop of estimation under null hypothesis algorithm. Default is
25.- inner_tol
Used in estimation under the null hypothesis. Convergence tolerance within each inner loop of estimation under null hypothesis algorithm. Default is
1.- c1
Used in estimation under the null hypothesis. Parameter for Armijo line search. Default is
1e-4.- trackB
Used in estimation under the null hypothesis. When
TRUEwill track the value ofBin each iteration of optimization algorithm. Defaults toFALSE.- return_nullB
Used in estimation under the null hypothesis. When
TRUEwill return the final value ofBunder each null hypothesis tested. Defaults toFALSE.- return_score_components
Used in estimation under the null hypothesis. When
TRUEwill return the components of the robust score test statistic for each null hypothesis tested. Defaults toFALSE.- return_both_score_pvals
Used in estimation under the null hypothesis, with
use_both_cov. Defaults toFALSE.- B_null_tol
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. numeric: convergence tolerance for null model fits for score testing (if max of absolute difference in B across outer iterations is below this threshold, we declare convergence). Default is
0.001.- rho_init
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. Value at which to initiate rho parameter in augmented Lagrangian algorithm. Default is
1.- tau
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. Value to scale
rhoby in each iteration of augmented Lagrangian algorithm that does not move estimate toward zero sufficiently. Default is2.- kappa
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. Value between
0and1that determines the cutoff on the ratio of current distance from feasibility over distance in last iteration triggering scaling ofrho. If this ratio is abovekappa,rhois scaled bytauto encourage estimate to move toward feasibility.- constraint_tol
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. Constraint tolerance for fits under null hypotheses (tested element of
Bmust be equal to constraint function to within this tolerance for a fit to be accepted as a solution to constrained optimization problem). Default is1e-5.- ntries
Used in estimation under the null hypothesis, for the augmented Lagrangian algorithm. The number of times to try optimization. Successive tries will change
tauandinner_maxitand retry.
Value
A list containing control options, to have more control over optimization algorithms used by radEmu.
This can be passed into emuFit().
