Package index
-
combine_independent_p_values()
- Combine independent p-values that test the same null hypothesis into an overall summary
-
fisher_info_contribution()
- Compute fisher information contribution to robust score statistic for glm robust score tests.
-
gee_test()
- Generalized Estimating Equations under technical replication with robust and non-robust Wald and Rao (score) tests
-
get_test_statistic()
- Just in case anyone wants to invert a p-value to recover the chi-squared distributed test statistic
-
glm_test()
- Generalized Linear Models with robust and non-robust Wald and Rao (score) tests
-
jackknife_se()
- Jackknife standard errors
-
lincom()
- Run robust wald test for null hypothesis of form A x beta = c
-
multinom_beta_vector_to_matrix()
- Create \(\beta\) matrix from vector of \(\beta\) for \(\beta_k : k \neq j\)
-
multinom_fisher_scoring()
- Optimization under null or alternative for multinomial model via Fisher scoring.
-
multinom_get_probs()
- Compute multinomial probabilities for a given value of model parameters.
-
multinom_info_mat()
- Compute Information matrix for model parameters.
-
multinom_log_lik()
- Negative log-likelihood for multinomial data under the alternative
-
multinom_penalized_estimation()
- Optimization under null or alternative for multinomial model with a Firth penalty.
-
multinom_score_vector()
- Compute score for model parameters.
-
multinom_test()
- Robust score (Rao) tests for multinomial regression.
-
print(<raoFit>)
- Print function
-
robust_score_test()
- Robust score (Rao) tests with finite-sample correction
-
score_contribution()
- Compute score contribution to robust score statistic for glm robust score tests.
-
set_up_lin_com()
- Create matrix to be populated with coefficients for user-specified number of hypotheses.
-
simulate_data_mult()
- Simulate multinomial data under the null (strong or weak) or alternative