Compute Hessian matrix at the MLE
Value
Hessian matrix at the MLE. In this setting, it's hard to compute expectations to calculate the information matrix, so we return the consistent estimate using sample moments: \(\hat{A}(\hat{\theta}) = \sum_i \frac{\partial^2}{\partial \theta \partial \theta^T} l(\theta, W_i)\) evaluated at \(\theta = \hat{\theta}\).
Examples
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
hessian(mod)
#> (Intercept) DayAmdmt21 (Intercept) DayAmdmt21
#> (Intercept) 3587.083848 2816.656102 -4.254135 -2.521716
#> DayAmdmt21 2816.656102 2816.656102 -2.521716 -2.521716
#> (Intercept) -4.254135 -2.521716 15.826817 7.827544
#> DayAmdmt21 -2.521716 -2.521716 7.827544 7.827544